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Abstract : 

Type II superconductors also have zero resistance, but their perfect diamagnetism 

occurs only below  the lower critical field BC1. Then one defines the ratio of λ and 𝜉 as a  

Ginzburg-Landau parameter k k plays a very important role in type II superconductors. The 

density of super electrons ns which characterizes the superconducting state, increase from 

zero at the interface with a normal material to a constant value for inside, and the length scale 

for this to occur is the coherence length As external magnetic field B decays exponentially  

to zero inside a superconductor  
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1. Introduction : 

One of the most fertile approach to superconductivity has been developed from 

Ginzburg and Landaul. Landau2 had develped a general theory for second order phase 

transition based on the idea that a phase transition could be characterized by some kind of 

order parameter. The critical insight in GL theory was that for a superconductor the order 

parameter must be identified with the macroscopic wave function Ψ . This means that an 

order parameter is complex and varies in space.  

The Landau theory is concerned with the temperature region near Tc in which 𝜙 is 

small. The stable phase is the one in which the free energy F is a minimum. The first basic 

assumption of the theory, is that in the region where 𝜙 is small F can be expanded as a power 

series in  :  
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F = 𝐹𝑛+ 𝜆𝜙 + 𝛼𝜙2+ 𝛾𝜙3 +
1

2
𝛽𝜙4,       (1) 

There are systems in which such a simple expansion is not possible, but it does work 

for superconductivity. In equation (1), all the coefficient, λ, 𝛼 etc. are to be taken as 

functions of T, since the equilibrium values of F and 𝜙 are functions of T. The second basic 

assumption is that the coefficients can be expanded in powers of (T-T).  Again this simple 

assumption does of hold for all system, but again it does hold for superconductivity. We can 

use this assumption to simplity (1) considerably. First, the equilibrium phase corresponds to 

a minimum in F:  

 
𝜕𝐹

𝜕𝜙
  = 0           (2)  

In the normal phase, we must have a minimum at 𝜙 = 0, which implies 𝜆 = 0 for T > 

Tc. Since we are assuming that x =0 T for all T. Furthermore, in most systems, including 

superconductors and He II, the term in 𝜙3 does not occur. We are thus left with  

F = 𝐹𝑛+ 𝛼 (𝑇)𝜙2 1

2
+ +

1

2
𝛽(𝑇)𝜙4,        (3)  

where we now show the temperature dependences explicitly.  

We now find the temperature dependence of a and J3 . Equation  (2) for the value 𝜙0, 

of 𝜙at the minimum gives  

 

  𝛼𝜙0 + 𝛽𝜙0
3 = 0          (4)  

with solutions 𝜙0 = 0 and  𝜙0
2 = -𝛼/𝛽 Now we want 𝜙0 = 0 to be the only solution for 

T > Tc , whereas for T < Tc. we must have a solution with 𝜙0 ≠ 0. We can achieve this if we 

take the temperature dependence so that –𝛼/𝛽 is negative for   T> Tc, the positive for T < 

Tc. In addition, we must have 𝛽 positive at all temperatures, since if 𝛽 were negative F 
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would decrease indefinitely for large values of 𝜙. We  therefore want a to be positive for T > 

Tc, and negative T< Tc . The  simplest temperature dependences that give this are  

 

𝛼(𝑇) =  𝐴(𝑇 − 𝑇𝑐)          (5) 

𝛽(𝑇) =  𝛽(𝑇 − 𝑇𝑐)𝛽          (6) 

With 𝛼 and 𝛽 given by equation (5) and (6) the solution for 𝜙0,  from equation (5), is  

𝜙0 = 0     T > 𝑇𝐶 

𝜙0 = ± 𝐴1/2 (𝑇𝐶 − 𝑇)1/2/𝛽1/2  T > 𝑇𝐶    (7) 

The two signs for T<Tc correspond to the two branches shown in figure 2A. In 

addition, 𝜙0 = o remains a solution below Tc, but as we shall see shortly, it corresponds there 

to a maximum, not a minimum. Equation (7) gives a rapid, parabolic, increase in 𝜙0 = o as T 

decreases from Tc; It is instructive to consider the free energy F as well as 𝜙. First, the value 

of F at the minimum.  𝐹𝑚𝑖𝑛 ,  is given by substituting 𝜙0 in equation (3) 

𝐹𝑚𝑖𝑛 = 𝐹𝑛.     T > 𝑇𝐶     (8) 

  𝐹𝑚𝑖𝑛 = 𝐹𝑛 - 
1

2
 𝛼2𝛽 =  𝐹𝑛 −  

1

2
 𝐴2       (𝑇𝐶 − 𝑇)2/ 𝐵𝑇 < 𝑇𝑐   (9) 

Note in particular, that 𝐹𝑚𝑖𝑛, decreases rather slowly from Fn as T decreases  below Tc. The 

solution 𝜙𝑛 = o below Tc gives F = Fn  as we said, it gives  a maximum, not a minimum. The 

fact that Fmin changes only slowly, while 𝜙𝑛 changes rapidly, with T, means that a thermal 

fluctuation which involves a large change in 𝜙𝑛, need only require a small changes of free 

energy. This is the reason for the sensitivity of second-order phase changes to fluctuation 

effects.  

2. Discussion of Ginzburg-Landau Equation  

The extension of the Landau theory to superconductors involves  treating the wave function 

Ψ as an order parameter. This introduces two complications: first, the order parameter 
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becomes a function of position, in general; second, we must include explicitly the coupling 

of the supercurrent to the magnetic field and the magnetic-field energy. Both of these 

complications arise in the treatment of the mixed-state vortex lattice.  

Let us first make Iv a function of position; we can do this by treating equation (3) as an 

expression for the free-energy density at the point r, which we integrate over the volume of 

the specimen to get the total free energy. Furthermore, with Ψ a function of position, we can 

expect a 'kinetic-energy' term in the energy proportional to    ⃒∇Ψ⃒2 The free-energy density 

is therefore  

f(r) = fn  + 𝛼   ⃒ Ψ(𝑟)⃒2 + 
1

2
 𝛽   ⃒Ψ(𝑟)⃒4  +

ђ2

2𝑚
 ∇Ψ (𝑟)⃒2      (10) 

  We use modulus signs because y is complex. Following the  usual convention in GL 

theory, we write the coefficient of the gradient terms as ђ2/m, where m is the mass of the 

electron. As de Gennes (1966)3 emphasises, there is no physical content to this choice: in the 

end it simply determines the normalisation of Ψ In fact. we did effectively make a different 

choice when we wrote London's equation using 2m, the mass of a Cooper pair. We allowed 

for that my noralising  

Ψ so that   ⃒Ψ⃒2 was ns /2,  the density of Cooper pairs. Here therefore, we should interpret  

⃒Ψ⃒2 as ns, the electron density, although in fact  we shall not use this explicitly. We can 

take the coefficient of ⃒∇Ψ⃒2  independent of T, like 𝛽, because we are dealing with a small 

temperature region near Tc and the   ⃒∇Ψ⃒2  term must always be positive.  

Even at this stage, we can see the principal physical consequence of adding the 

gradient term: it prevents y from chafing too rapidly, since a high value of the gradient would 

give a large contribution to the free energy. On dimensional grounds, we can expect an 

appropriate ratio of coefficients to define a fundamental length   𝜉(𝑇) = (ђ2/2𝑚⃒⃒𝑎⃒⃒)1/2   is 

central to GL theory. It is clear that variations of which are rapid within a distance 𝜉(𝑇) will 
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not occur. We shall find that 𝜉(𝑇) is the coherence length for variations of the order 

parameter in the sense it is the core radius of a vortex line.  

The inclusion of magnetic-field in the free energy requires a  little care. The total induction B 

in the superconductor is the sum of the induction produced by the applied field Ho, and that 

produced by the suprecurrent  Jc.  

Curl (B- 𝜇0𝐻0) =  𝜇0𝐽𝑐         (11) 

We extend the free energy of equation (10) to include  magnetic-field effects by 

making the usual replacement.  

∇→ ∇ ±
2𝑖𝑒

ℎ
 𝐴  

with the + sign, if ∇ acts on  Ψ and — sign if   ∇ acts on Ψ . We  also add the 

magnetic-field energy, to get  

∫(𝑟) =  𝑓𝑛 +  𝛼⃒Ψ(𝑟)⃒2 +
1

2
 + 𝛽⃒Ψ(𝑟) ⃒4  

 + 
1

2
 ⃒(ih∇ −2eA)Ψ⃒2 + 𝛽2/2𝜇0 − 𝜇0 − 𝐻0

2/2    (12) 

The integral of f(r) over the volume of the specimen is he  Helmholtz free energy F  = 

U – T ∑. To maintain consistency with the thermodynamic equation, we subtract  
1

2
 𝜇0𝐻0

2, 

which is the magnetic energy of the coils generating the applied field Ho. The internal energy 

U is the energy of the superconductor in the presence of the magnetic field, so that  

dU = Td ∑ + 𝐻0 . 𝑑𝑚⃒          (13) 

To find the stable state at temperatuare T and field Ho, we must minimise the Gibbs 

free energy. 

G(T, Ho) = U - T∑ − 𝐻0 𝑀.        (14) 

Thus, finally, we have the result that we must minimise G:  

G =  ∫ 𝑔 (𝑟)𝑑3𝑟           (15) 

with  
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g(r) = 𝑓𝑛 +  𝛼 ⃒Ψ(𝑟)⃒2  +
1

2
 𝛽⃒Ψ(𝑟)⃒4 

  + 
1

2
 ⃒(- ih∇ −2eA)Ψ⃒2 + 𝛽2/2𝜇0 − 𝐻0.𝐵 +

1

2
𝜇0𝐻0

2    (16) 

In some accounts of GL theory, it is stated that the free energy G =  ∫ 𝑓 (𝑟)𝑑3𝑟  should be 

minimised; the Helmholtz energy density (r) differs from the Gibbs density g(r) by Ho. M. 

We shall seee that one gets the same equation for Ψ(r) and for the super current whether one 

minimises F of G. However,in discussing the parallel critical fields of thin films, for 

example, it is important to use the correct function G.  

The energy G is sn integral involving two functions Ψ(r) and A(r) (recall that B= curl 

A.) This contrast with the ordinary Landau theory, where G is a function of the variable 𝜙. In 

that case, the equation for a minimum was simply 𝜕G/𝜕𝜙  = 0 . Now, since G depends on 

functions Ψ and A*, we must use the Euler-Lagrange equations of the calculus of variations. 

Since Ψ is complex, we can minimise with respect to either Ψ; the Ψ* equation is 
𝜕𝑔

𝜕Ψ
 - ∑

𝜕𝑔

𝜕𝑥𝑖
 

𝜕𝑔

𝜕(∇jΨ∗)
 = 0         (17) 

where ∇jΨ
∗ is the component of the gradient in the direction j. This equation is 

sometimes written formally as    𝛿𝐺/𝛿Ψ∗  =  0, where 𝛿𝐺/𝛿Ψ∗ stands for the left-hand side 

of equation (17). After some  manipulatation, and with the restriction that we use the gauge 

div A=0,  equation (17) becomes  

1

2
 ( −ℎ∇ − 2𝑒𝑉)2αΨ + β ⃒Ψ⃒2Ψ = 0.       (18) 

This is the first GL equation. If we had minimised with respect to y rather than Ψ∗we would 

simply have found the complex conjugate  equation.  

3. Conclusion : 

From the above investigations on type II superconductivity we can draw the following 

conclusion.  
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I. Ginzburg- Landau phenomenological theory works quite well in explaining the 

various properties of type II superconductors.  
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